Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Med ; 29(4): 950-962, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37069360

RESUMO

Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Células Endoteliais/patologia , Estudo de Associação Genômica Ampla , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Genômica
2.
Ageing Res Rev ; 80: 101679, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777725

RESUMO

The current evidence on the association of leukocyte telomere length (LTL) with age-related structural and cognitive changes in the brain is mixed. Herein conforming to PRISMA 2020 guidelines, we performed a systematic review and meta-analysis using data from 27 observational studies in non-demented individuals. We used effect size and p-value based meta-analysis methods considering marked heterogeneity among studies. We found that the longer LTL was associated with higher brain volume (ß = 0.43, 95%CI: 0.36-0.50%, p = 0.008, N = 1102) and with higher global cognition (ß = 0.01; 95%CI: 0.00-0.02, p = 0.03, N = 19609) by effect size based meta-analysis and with brain volume, hippocampal volume, global cognition, cognitive domains of attention/speed as well as executive functions by p-value based meta-analysis. No significant association of LTL with brain white matter hyperintensities was detected. Furthermore, the evidence strongly suggests a subgroup-specific canonical effect of telomeres, notably in older individuals and females. In conclusion, we provide meta-analytic evidence on the beneficial effect of telomeres on brain structure as well as cognition and advocate for a beneficial subgroup-specific effect that warrants further attention.


Assuntos
Envelhecimento , Telômero , Idoso , Envelhecimento/genética , Envelhecimento/psicologia , Encéfalo , Cognição , Feminino , Humanos , Leucócitos/química , Encurtamento do Telômero
3.
Kidney Int ; 102(3): 624-639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716955

RESUMO

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Assuntos
N-Acetilgalactosaminiltransferases , Insuficiência Renal Crônica , Insuficiência Renal , Estudos Transversais , Loci Gênicos , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Humanos , Rim , Estudos Longitudinais , N-Acetilgalactosaminiltransferases/genética , Insuficiência Renal/genética
4.
Brain ; 145(6): 1992-2007, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35511193

RESUMO

Cerebral small vessel disease is a leading cause of stroke and a major contributor to cognitive decline and dementia, but our understanding of specific genes underlying the cause of sporadic cerebral small vessel disease is limited. We report a genome-wide association study and a whole-exome association study on a composite extreme phenotype of cerebral small vessel disease derived from its most common MRI features: white matter hyperintensities and lacunes. Seventeen population-based cohorts of older persons with MRI measurements and genome-wide genotyping (n = 41 326), whole-exome sequencing (n = 15 965), or exome chip (n = 5249) data contributed 13 776 and 7079 extreme small vessel disease samples for the genome-wide association study and whole-exome association study, respectively. The genome-wide association study identified significant association of common variants in 11 loci with extreme small vessel disease, of which the chr12q24.11 locus was not previously reported to be associated with any MRI marker of cerebral small vessel disease. The whole-exome association study identified significant associations of extreme small vessel disease with common variants in the 5' UTR region of EFEMP1 (chr2p16.1) and one probably damaging common missense variant in TRIM47 (chr17q25.1). Mendelian randomization supports the causal association of extensive small vessel disease severity with increased risk of stroke and Alzheimer's disease. Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. We observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Overall, our comprehensive gene-mapping study and preliminary functional evaluation suggests a putative role of TRIM47 in the pathophysiology of cerebral small vessel disease, making it an important candidate for extensive in vivo explorations and future translational work.


Assuntos
Isquemia Encefálica , Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/complicações , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Células Endoteliais/patologia , Estudo de Associação Genômica Ampla , Camundongos , Acidente Vascular Cerebral/complicações
5.
Kidney Int ; 99(4): 926-939, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33137338

RESUMO

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Proteínas Quinases Ativadas por AMP , Creatinina , Taxa de Filtração Glomerular/genética , Humanos , Isomerases de Dissulfetos de Proteínas , Reino Unido
6.
Stroke ; 51(7): 2111-2121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517579

RESUMO

BACKGROUND AND PURPOSE: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.


Assuntos
Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Predisposição Genética para Doença/genética , Substância Branca/patologia , Idoso , Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
7.
Front Psychiatry ; 11: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180739

RESUMO

There are controversial results if leukocyte telomere length (LTL) is related to structural brain changes and cognitive decline in aging. Here, we investigated the association between LTL and 1) global MRI correlates of brain aging such as brain parenchymal fraction (BPF) and white matter hyperintensities (WMH) load and Fazekas score as well as 2) global (g-factor) and domain-specific cognition such as attention/speed, conceptualization, memory, and visuopractical skills. In total, 909 participants of the Austrian Stroke Prevention Study with LTL, MRI, and cognitive tests were included. There were 388 (42.7%) men, and the mean age was 65.9 years. Longer LTL was significantly associated with larger BPF (ß = 0.43, p < 0.001), larger WMH load (ß = 0.03, p = 0.04), and score (ß = 0.05, p = 0.04) after adjusting for age, sex, vascular risk factors, and ApoE4 carrier status. The effect on BPF was more significant in the subgroups of women (ß = 0.51, p = 0.001), age >65 years (ß = 0.58, p = 0.002), BMI ≥ 25 (ß = 0.40, p = 0.004), education ≤10 years (ß = 0.42, p = 0.002), hypertensives (ß = 0.51, p = 0.001), cardiovascular disease (CVD) (ß = 0.58, p = 0.005), non-diabetics (ß = 0.42, p < 0.001), and Apoe4 non-carriers (ß = 0.49, p < 0.001). The effect on WMH was significant within the hypertensives (load: ß = 0.04, p = 0.02), non-diabetics (load:ß = 0.03, p = 0.01; score: ß = 0.06, p = 0.02), in those with education ≤10 years (load: ß = 0.03, p = 0.04; score: ß = 0.07, p = 0.02), in ApoE4 non-carriers (load: ß = 0.03, p = 0.02; score: ß = 0.07, p = 0.01) and in subjects without CVD (score: ß = 0.06, p = 0.05). We only observed a significant association between LTL and the cognitive domain of attention/speed, which was confined to the subgroups of BMI ≥ 25 (ß = 0.04, p = 0.05) and education ≤10 years (ß = 0.04, p = 0.05). The effect of LTL on attention/speed was partly mediated in both subgroups by BPF (ß = 0.02, 95% CI = 0.01:0.03) when tested by bootstrapping. Our results support a strong protective role of longer LTL on global brain volume which in turn may contribute to better cognitive functions, especially in the attention/speed domain in the elderly.

8.
Front Genet ; 10: 856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608108

RESUMO

Library preparation for whole-exome sequencing is a critical step serving the enrichment of the regions of interest. For Ion Proton, there are only two exome library preparation methods available, AmpliSeq and SureSelect. Although of major interest, a comparison of the two methods is hitherto missing in the literature. Here, we systematically evaluate the performance of AmpliSeq and SureSelect and present an improved variant calling pipeline. We used 12 in-house DNA samples with genome-wide and exome microarray data and a commercially available reference DNA (NA12878) for evaluation. Both methods had a high concordance (>97%) with microarray genotypes and, when validating against NA12878, a sensitivity and positive predictive values of >93% and >80%, respectively. Application of our variant calling pipeline decreased the number of false positive variants dramatically by 90% and resulted in positive predictive value of 97%. This improvement is highly relevant in research as well as clinical setting.

9.
Front Genet ; 10: 732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475037

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Genetic factors play a key role in ALS, and identifying variants that contribute to ALS susceptibility is an important step toward understanding the etiology of the disease. The frequency of protein altering variants in ALS patients has been extensively investigated in populations of different ethnic origin. To further delineate the genetic architecture of the Hungarian ALS patients, we aimed to detect potentially damaging variants in major and minor ALS genes and in genes related to other neurogenetic disorders. A combination of repeat-sizing of C9orf72 and next-generation sequencing (NGS) was used to comprehensively assess genetic variations in 107 Hungarian patients with ALS. Variants in major ALS genes were detected in 36.45% of patients. As a result of repeat sizing, pathogenic repeat expansions in the C9orf72 gene were detected in 10 patients (9.3%). According to the NGS results, the most frequently mutated genes were NEK1 (5.6%), NEFH, SQSTM1 (3.7%), KIF5A, SPG11 (2.8%), ALS2, CCNF, FUS, MATR3, TBK1, and UBQLN2 (1.9%). Furthermore, potentially pathogenic variants were found in GRN and SIGMAR1 genes in single patients. Additional 33 novel or rare known variants were detected in minor ALS genes, as well as 48 variants in genes previously linked to other neurogenetic disorders. The latter finding supports the hypothesis that common pathways in different neurodegenerative diseases may contribute to the development of ALS. While the disease-causing role of several variants identified in this study has previously been established, other variants may show reduced penetrance or may be rare benign variants. Our findings highlight the necessity for large-scale multicenter studies on ALS patients to gain a more accurate view of the genetic pattern of ALS.

10.
Genet Med ; 20(11): 1414-1422, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29543232

RESUMO

PURPOSE: Thoracic aortic aneurysm/aortic dissection (TAAD) is a disorder with highly variable age of onset and phenotype. We sought to determine the prevalence of pathogenic variants in TAAD-associated genes in a mixed cohort of sporadic and familial TAAD patients and identify relevant genotype-phenotype relationships. METHODS: We used a targeted polymerase chain reaction and next-generation sequencing-based panel for genetic analysis of 15 TAAD-associated genes in 1,025 unrelated TAAD cases. RESULTS: We identified 49 pathogenic or likely pathogenic (P/LP) variants in 47 cases (4.9% of those successfully sequenced). Almost half of the variants were in nonsyndromic cases with no known family history of aortic disease. Twenty-five variants were within FBN1 and two patients were found to harbor two P/LP variants. Presence of a related syndrome, younger age at presentation, family history of aortic disease, and involvement of the ascending aorta increased the risk of carrying a P/LP variant. CONCLUSION: Given the poor prognosis of TAAD that is undiagnosed prior to acute rupture or dissection, genetic analysis of both familial and sporadic cases of TAAD will lead to new diagnoses, more informed management, and possibly reduced mortality through earlier, preclinical diagnosis in genetically determined cases and their family members.


Assuntos
Aneurisma da Aorta Torácica/genética , Colágeno Tipo I/genética , Fibrilina-1/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Adolescente , Adulto , Idade de Início , Idoso , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/fisiopatologia , Criança , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Análise de Sequência de DNA
11.
Genet Med ; 18(11): 1119-1127, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27011056

RESUMO

PURPOSE: Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. METHODS: We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. RESULTS: Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. CONCLUSION: Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.


Assuntos
Colágeno/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Síndrome de Ehlers-Danlos/fisiopatologia , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Patologia Molecular/métodos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...